Greedy Strikes Again: A Deterministic PTAS for Commutative Rank of Matrix Spaces
نویسندگان
چکیده
We consider the problem of commutative rank computation of a given matrix space, B ⊆ Fn×n. The problem is fundamental, as it generalizes several computational problems from algebra and combinatorics. For instance, checking if the commutative rank of the space is n, subsumes problems such as testing perfect matching in graphs and identity testing of algebraic branching programs. An efficient deterministic computation of the commutative rank is a major open problem, although there is a simple and efficient randomized algorithm for it. Recently, there has been a series of results on computing the non-commutative rank of matrix spaces in deterministic polynomial time. Since the non-commutative rank of any matrix space is at most twice the commutative rank, one immediately gets a deterministic 1 2 -approximation algorithm for the computation of the commutative rank. This leads to a natural question of whether this approximation ratio can be improved. In this paper, we answer this question affirmatively. We present a deterministic Polynomial-time approximation scheme (PTAS) for computing the commutative rank of a given matrix space. More specifically, given a matrix space B ⊆ Fn×n and a rational number > 0, we give an algorithm, that runs in time O(n4+ 3 ) and computes a matrix A ∈ B such that the rank of A is at least (1− ) times the commutative rank of B. The algorithm is the natural greedy algorithm. It always takes the first set of k matrices that will increase the rank of the matrix constructed so far until it does not find any improvement, where the size of the set k depends on . 1998 ACM Subject Classification G.1.3 Numerical Linear Algebra
منابع مشابه
NILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملThe Best Rank-One Approximation Ratio of a Tensor Space
Abstract. In this paper we define the best rank-one approximation ratio of a tensor space. It turns out that in the finite dimensional case this provides an upper bound for the quotient of the residual of the best rankone approximation of any tensor in that tensor space and the norm of that tensor. This upper bound is strictly less than one, and it gives a convergence rate for the greedy rank-o...
متن کاملDeterministic Polynomial Time Algorithms for Matrix Completion Problems
We present new deterministic algorithms for several cases of the maximum rank matrix completion problem (for short matrix completion), i.e. the problem of assigning values to the variables in a given symbolic matrix as to maximize the resulting matrix rank. Matrix completion belongs to the fundamental problems in computational complexity with numerous important algorithmic applications, among o...
متن کاملDeterministic Sparse Column Based Matrix Reconstruction via Greedy Approximation of SVD
Given a matrix A ∈ Rm×n of rank r, and an integer k < r, the top k singular vectors provide the best rank-k approximation to A. When the columns of A have specific meaning, it is desirable to find (provably) “good” approximations to Ak which use only a small number of columns in A. Proposed solutions to this problem have thus far focused on randomized algorithms. Our main result is a simple gre...
متن کاملCommutative/noncommutative Rank of Linear Matrices and Subspaces of Matrices of Low Rank
A space of matrix of low rank is a vector space of rectangular matrices whose maximum rank is stricly smaller than the number of rows and the numbers of columns. Among these are the compression spaces, where the rank condition is garanteed by a rectangular hole of 0’s of appropriate size. Spaces of matrices are naturally encoded by linear matrices. The latter have a double existence: over the r...
متن کامل